5-4 Inverse Functions

Objectives:
-I can find the inverse of a given function graphically and algebraically
-I can analyze the domain of a function and its inverse

- I can verify inverses using composition

Inverse of a Relation

The inverse of a relation consisting of the ordered pairs (x, y) is the set of all ordered pairs (y, x).

Notation:
$f^{-1}(x)$
Represents the inverse of the function $f(x)$

Horizontal-Line Test

The inverse of a function is a function if and only if every horizontal line intersects the graph of the given function (passed the vertical-line test) at no more than one point.

If a function passes both the vertical line test AND the horizontal line test, then it is a one-to-one function.

Determine whether the function is one-to-one.

Inverses - graphically

Inverse relations are reflections of each other over the line $\mathrm{y}=\mathrm{x}$ (identity function)

Property of inverse relations: Suppose $f \& f^{-1}$ are inverse relations, then $f(a)=b$ iff $f^{-1}(b)=a$

Show $f(x)=6-2 x$ and $g(x)=\frac{6-x}{2}$ are inverses graphically

$f(x)$:
$(1,4)$
$(3,0)$
$\stackrel{(4,-2)}{\chi}$
$g(x)$:
$(4,1)$
$(0,3)$
$(-2,4)$

Graph the inverse of the graph. (Use $y=x$ to find inverse points)

To find the inverse equation of a function

1. Change $f(x)$ to y.
2. Interchange x and y
3. Solve for y
4. Change new y to $f^{1}(x)$

Find the inverse of each function

$$
\begin{gathered}
f(x)=x^{2}+1 \\
y=x^{2}+1 \\
x=y^{2}+1 \\
-1-1 \\
\sqrt{x-1}=\sqrt{y^{2}} \\
y=\sqrt{x-1} \\
f^{-1}(x)=\sqrt{x-1}
\end{gathered}
$$

$$
\begin{gathered}
g(x)=\frac{x+1}{2 x+3} \\
(2 y+3) x=\frac{y+1}{2 y+3}(2 y+3) \\
(2 y+3) x=y+1 \\
2 x y+3 x=y+1 \\
-3 x+y \\
2 x y-y=1-3 x \\
y(2 x-y)=\frac{1-3 x}{2 x-1} \\
2 x-1 \\
y=\frac{1-3 x}{2 x-1} \\
g^{-1}(x)=\frac{1-3 x}{2 x-1}
\end{gathered}
$$

Find the inverse of each function.

$$
\begin{array}{ll}
h(x)=2 x^{3}+3 & g(x)=\sqrt[3]{x}-3 \\
x-3=2 y^{3} & x+3=\sqrt[2]{y} \\
\sqrt[3]{\frac{x-3}{2}}=y & g^{-1}(x)=(x+3)^{3} \\
h^{-1}(x)=\sqrt[3]{\frac{x-3}{2}} & \\
\text { or } & \\
h^{-1}(x)=\sqrt[3]{\frac{1}{2} x-\frac{3}{2}} &
\end{array}
$$

Find the inverse of $f(x)$ and state the domain of $\mathrm{f}^{-1}(\mathrm{x})$ including any inherited restrictions

$$
\begin{aligned}
& f(x)=2 x+5 \\
& \begin{array}{ll}
D & (-\infty, \infty) \\
R & (-\infty, \infty)
\end{array} \\
& x=2 y+5 \\
& x-5=2 y \\
& y=\frac{x-5}{2} \\
& f^{-1}(x)=\frac{x-5}{2}=\frac{1}{2} x-\frac{5}{2}
\end{aligned}
$$

Find the inverse of $f(x)$ and state the domain of $f^{-1}(x)$ including any inherited restrictions

$$
\begin{aligned}
& f(x)=\sqrt{2 x-3} \\
& (x)^{2}=(\sqrt{2 y-3})^{2} \\
& x^{2}=2 y-3 \\
& x^{2}+3=2 y \\
& \frac{x^{2}+3}{2}=y \quad f^{-1}(x)=\frac{x^{2}+3}{2}
\end{aligned}
$$

Find the inverse of $f(x)$ and state the domain of $f^{-1}(x)$ including any inherited restrictions

$$
\begin{aligned}
& f(x)=\frac{4 x+1}{x-2} \\
& (y-2) x=\frac{4 y+1}{y-2}(y-2) \\
& x(y-2)=4 y+1 \\
& x y-2 x=4 y+1 \\
& x y-4 y=1+2 x \\
& \frac{y(x-4)}{x-4}=\frac{1+2 x}{x-4} \quad f^{-1}(x)=\frac{2 x+1}{x-4}
\end{aligned}
$$

We can verify that two functions are inverses of each other by determining if the composition of the two functions are both equal to x .

$$
\begin{array}{ll}
f \circ g=x & g \circ f=x \\
f \circ f^{-1}=x & f^{-1} \circ f=x
\end{array}
$$

Use composition to determine if the following functions are inverses of each other

$$
\begin{gathered}
f(x)=5 x(+1 \quad(f \circ g)(x) \quad f(g(x)) \\
g(x)=\frac{x)-1}{5} \\
f(g(x))=f\left(\frac{x-1}{6}\right)+1=x-1+1=x \\
g\left(\frac{f(x)}{}\right)=\frac{5 x+x-1}{5}=\frac{\$ x}{5}=x
\end{gathered}
$$

Use composition to determine if the following functions are inverses of each other.

$$
\begin{aligned}
& f(x)=\frac{x-1}{4} \\
& g(x)=4 x+1
\end{aligned}
$$

